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Based on the particle distribution density function method over space, velocity, and angular rotational 

velocity, a closed system of equations for the first and second moments of the fluctuations of the charac- 

teristics of the particles and boundary conditions representing the process of the loss of momentum and 

onset of rotation of the particles caused by collisions with walls are found. 

In calculating pneumatic transport systems with turbulent gas suspension fows of large particles whose 

time of dynamic relaxation is much greater than the integrated time scale of turbulence, it is necessary to take into 

account the collisions of the particles with the walls of the channels. The intensity and frequency of collisions 

determine the rate of erosion of the internal surfaces of the tubes and the degree of the inverse effect of a disperse 

admixture on the carrier flow characteristics [1-4 ]. Investigation of the turbulent flow of inertial particles is also 

of interest in calculations of the characteristics of disperse flows emerging from nozzles in the form of jets [5 ]. 

Numerical simulation of gas suspension flows is based on the use of three approaches. First, it is based on 

a mixed description of a two-phase flow, Eulerian for the liquid phase and Lagrangian for particles. The averaged 

characteristics of the flow are found from calculations of several thousand Lagrangian trajectories realizable in a 
given random field of carrier phase velocity fluctuations (see, e.g., [6 - i 0  ]). In this case, determination of the 

inverse effect of the admixture on the carrier flow with account for the collision of the particles with the walls may 

require unrealistic expenditures of computer time. In the second approach, so far confirmed for relatively simple 

flows [11 ], both the fluctuational characteristics of the continuous and disperse phases and the distortion of the 

carrier flow turbulence under the action of the particles are determined on the basis of direct stochastic simulation. 

The likelihood that this procedure can be implemented at present to calculate pneumatic transport systems is highly 

questionable. 

The third technique of numerical simulation of turbulent gas-disperse flows, based on a single Eulerian 

description of the dynamics of the gas phase and the particles, is the most economical one for the considered class 

of flows and provides averaged information that is valuable in practice. To perform specific calculations, it is 

necessary to have a closed system of equations for the moments of disperse phase velocity fluctuations and 

corresponding boundary conditions that represent the process of the collision of the particles with the bounding 

surface. Note that due to the collision of the particles with the walls the former acquire dynamic properties that 

affect the flow of the stream as a whole. In particular, the intensity of the pulsational motion of the inertial particles 

is determined not only by the degree of involvement of the admixture in the turbulent motion of the liquid phase, 

but also by the character of the interaction of the particles with the channel walls. When particles collide with the 

surface, a loss of momentum occurs, and the particles begin to rotate about their axes. The Magnus force appearing 

due to the rotation of the particles causes intense transverse motion of admixture particles [6, 7, 12, 13 ]. Thus, 
the channel walls along which a gas suspension is transported serve as a "positive feedback" in the gas-particles 

system leading to additional generation of disperse phase fluctuations compared to turbulent flow outside bounding 

surfaces. 
In [14 ], on the basis of the Eulerian description, calculations were made for the effect of the swirling of 

particles on the characteristics of flow emerging from a nozzle. The profiles of the angular velocity of the rotation 
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of the particles around their axes are specified empirically from the condition of the coincidence between the results 

of calculation of the motion of the particles and experimental data. The model did not involve boundary conditions 

for the equations of the characteristics of the particles. In [ 13 ] calculations of flow were performed on the basis of 

a system of equations for second and third moments of velocity fluctuations of particles closed on the basis of the 

hypothesis of quasi-normality. A system of boundary conditions was written in [13] in a form in which for 

calculations information is required not only about the coefficients of restitution of the momentum, but also about 

the value of the ratio between the angular velocities of the particles before and after collision with a wall as a 

function of the Stokes number (this ratio is also approximated from an analysis of experimental data). The necessity 

of resorting to additional semiempirical information, whose validity is reflected by the modeled class of flows, 

sharply narrows the predicting properties of the models [13, 14 ]. 

The aim of the present work is to develop an Eulerian technique for describing the dynamics of a turbulent 

gas suspension flow on the basis of a system of equations for moments and boundary conditions in which the process 

of the collision of particles is governed only by the coefficients of the recovery of momentum in collision. To solve 

the problem, an equation for the probability density function (PDF) of the distribution of particles in space, 

velocities, and angular rotational velocities is invoked. 

In this work we do not discuss the problem of the effect of the gas suspension on the characteristics of gas 

flow. We consider a gas suspension flow in which the volumetric concentration of particles is low and the collisions 

of particles with one another can be neglected. 

Using the method of functional differentiation, we construct a closed equation for the PDF; on the basis 

of this equation we obtain a system of equations for the first and second moments of fluctuations of the velocity 

and angular rotational velocity of the particles. We develop a method of approximate solution of the kinetic equation 

and obtain closed expressions that describe turbulent transfer of the mass, momentum, angular momentum, and 

pulsational energy of the disperse phase. From relations representing the process of interaction of a single particle 

with the bounding surface we find boundary conditions for a closed system for the first and second moments of 

the fluctuations of velocity and angular rotational velocity of an admixture particle. 

1. With account for the Magnus force, the equations of motion of a single solid particle have the form [12 ] 

dVpi 1 
dRp! = Vpi(I) = - ( U  i (Rp t ) -  Vpi ) - T w e k i j a p k ( U ] ( R p  t ) -  Vpj) 

dt ' dt v ' ' ' 

dQpi = _ 1 f2pi ( t) 
dt r~ " 

(1) 

We assume that the times of dynamic relaxation and the parameter 7~o depend on the angular rotational 

velocity of the particles and the relative velocity of the averaged gas flow around a particle [15, 16 ]. 

In the equation for the angular velocity of the particles (1), the rotation of a particle due to flow vorticity 

is not taken into account. The possibility of this approximation for inertial particles is supported by the following 

arguments. Due to the inertia of the admixture, the characteristics of the particles do not depend on the local 

properties of the carrier medium, but are subjected to overall averaging over a region with a scale of the order of 

l - r a  1/2 (a is the level of the pulsational energy of the inertial particles with r > >  TE, cr -ETE/-C; E is the level 

of the pulsational energy of the carrier phase; TE is the time macroscale of turbulent fluctuations of the gas). In 
this situation l NEI/2(TEr)I/2 can exceed the characteristic transverse dimension of the channel. The angular 

rotational velocity of the particles due to the velocity gradient of the transverse flow is on the order of U/R.  

However, in reality the angular rotational velocity of the particles does not reach this value, since the time between 

two successive collisions of particles with the walls t c - R / a  1/'z is smaller than z-~oN~: when l > R. The angular 

rotational velocity of the particles acquired due to collision with the surface is equal to about Vw/dp (Vw is the 

characteristic velocity of the particles on the wall, Vw - U [1-5 ]). Thus, the ratio between the angular rotational 
velocity due to flow vorticity and the angular rotational velocity due to the collision of particles with the wall is 

smaller than dp/  R < < 1. 
Let us introduce the PDF of the particles in space, velocities, and angular rotational velocities 
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(O(x, V, Q, t))= (c~(X-Rp) 6(V-Vp)6(Q-fllp)). (2) 

Differentiation of Eq. (2) with respect to time and account for the equation of motion of a single particle (1) yield 

+ , ,  o ( ( u k )  - vk) 

o Qk ( , I , ) =  0 (u , , I , )  0 < )" (3) 

To close Eq. (3), it is necessary to find an expression for the correlator <u i ~>. For this purpose, we use 

the Furutsu-Novikov formula [17 ]: 

t 6 0 ( x ,  V,  ~ ,  t) 
(U./~I)) = f dx I f d~<u](x,  t) tt l ( x l ,  ~) )<-  6U I(x l ,  ~) ) ,  

0 

6 0  (X, V,  Q ,  /) _ O0 ORpm (t) OgP OVpm (t) 
~u l (x  1 , ~) Ox m (~u l(x I , ~) OV m 6u l(x 1 , ~) 

O0 6Qpm (t) (4) 
$u z (x l ,  $)' 

where 60 /6u l  is a functional derivative. 
For an inertial admixture the characteristic time scale for the correlations of the fluctuations of velocity 

and angular rotational velocity of the particles is on the order of r -Toj. The characteristic radius for the correlations 

of the gas velocity fluctuations is -TE.  A substantial change in the functional derivatives in Eqs. (4) is observed 

on the scales ( t-~)  - z - r o ~  [18]. In this case Eqs. (4) involve a small parameter T E /L  which can be used for 
approximate calculation of functional derivatives. In the first approximation in this parameter of smallness, we may 

assume that TE = 0 in Eq. (6), which is equivalent to the replacement of the real correlational tensor of the gas 

velocity fluctuations by the effective one [17 ] 

(U i ( x l ,  t) Uj(X2, t + S) > = T E<tt i(x 1 , t) ttj(X2, t) )6  (S). 

The introduction of the effective tensor of the correlations of liquid phase velocity fluctuations corresponds 

to passage to a Gaussian delta-time-correlated random process that approximates random effects of the fluctuation 

of the medium velocities on the inertial system of particles. 

The functional derivative of the angular rotational velocity of the particles is equal to zero because the 

equation for the angular rotational velocity (1) does not explicitly include the function ui(x,t). The functional 

derivative of the radius vector of a particle also does not enter into Eq. (4) when ~ ~ t [18 ]. 
To calculate the functional derivative of the velocity of a particle, we write down Eq. (1) in an integral form 

t ds ( t - s )  [Um(Rp(s) Vpm (t) = f ~ exp 7: 
0 

, s) + ~Tto ek]m (U] (Rp (s),  s) - Vp] (s)) Qpk (s) 1. (5) 

Applying to Eq. (5) the operator of functional differentiation 6/6ut (Xl, ~) and taking into account the 

equality 6uj(x, t)/6Ul(X, ~) = 6j /6(x-xt)6(t-~) ,  we obtain an expression for the correlator <us~>: 

(6) 

Substituting Eq. (6) into Eq. (3), we write a closed equation for PDF of the distribution of the particles in 

space, velocities, and angular rotational velocities 

@<dp) q_dr VkO<r O~k X @ [ "(<Uk}-r Vk) <~)+Ya'~i]kQi((U] )- Vj)(dP)] - 
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0 ~k 0 2 

- o-a-i ~ ( * >= o v: o----~k • 

• -'-f ( Uj U k ) + ~ 7e~ eink Qi ( u.i ttn) .-I- Y,0 TE enl] eimk( Um Ul ) an  n i  ( dp ) . (7) 
r 

Equation (7) is similar to the Fokker-Planck equation. It describes the onset of turbulent motion in a 

disperse phase as a result of pulsations of the force of viscous resistance and the Magnus force. We note that the 

intensity of pulsational motion, as is seen from Eq. (7), depends explicitly on the intensity of the rotation of the 

particles. 
2. Applying ensemble averaging of turbulent realizations, we find the averaged number density, velocity, 

and angular rotational velocity of the particles 

( N ( x ,  t))=fdVfd~(cD(x, V, ~, t)), 

( V i ( x ,  t))(N)=fdVfdt2Vi(dP(x, V, f~, t)), 

(C~i(x, t ) ) ( N ) = f d V f d ~ Q i ( a ~ ( x ,  V, ~, t)). 

In Eq. (7) the times of dynamic relaxation of the particles ~, T̀ 0 and the parameter 7,0 depend on the velocity 

of the averaged flow of gas around the particles and the angular rotational velocity. In what follows we take into 

account the effect of just the averaged relative slip of the phases <U>-<V> and the averaged angular velocity of 

the rotation of the particles about their axes <f2> on these parameters. 

For  s u b s e q u e n t  ana lys i s  of kinet ic  equat ion  (7) we go over to the  va r i ab les  vi = V i - < V i > ,  
cot = f~i-<f2i> (vi, oJi are the fluctuations of the velocity and angular rotational velocity of the disperse phase): 

X 

o(v~) (Uk)-(Vk) 
D ( ~ ) + + + 7`o e(ik • Dt Dt r 

~( ~ > (( u: ) - ( v: )) - ( ~ ) ~: + o,~ (( u: ) - ( v: >) - 

- v k m  

}o(~) (D(Q~) (Q,) o(~)_ 
aco k 

o(vi> o ( ~ )  o ( ~ )  o ( ~ )  1 o 
Oxk Ov i vk Ox k Ow i -c Ov k vk ( ~ 1 -  

1 o [ re 2re 
~ o~ok~(~) = --f(ujuk>+-S-r~%~• L 

Or/ov k 
(8) 

DtD - OtO + ( Vk ) oOxk 

Kinetic equation (8) yields a system of equations for the averaged concentrations, velocity, and angular 

rotational velocity of the particles 
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~ + 0  
Ot -~xk ( N ) ( Vk ) = O ' (9) 

D<v~) l o<N><,:k) <V~)-<V~) 
D------i--- + ( N ) Ox k r + 7oj eiik X 

x [<o,)(< uj> - < v:)) - <ookvj)l, (i0) 

D ( ~ i )  1 0 < N) < o~:,:,) < ~ )  
+ ~ = _ - -  ( 1 1 )  

Dt ( N ) Ox k %0 ' 

'where <vivk> <N> = fdvfdoo v~vk<,t,>, <oo~vk> <N> = fdvfdwcoiv~<~> are the turbulent fluxes of momentum 

and angular momentum arising due to the pulsational motion of the particles. On the basis of Eq. (8) we write a 

system of equations for the second moments of the fluctuations of the velocity and angular rotational velocity of 

the particles 

D ( viv) ) 1 O ( N ) ( vivjvk ) + ( ViVk ) O ( V] ) 
Dt + ( N )  Ox k ~ + 

o < v~) ~ ( o  _ (viv:)),  02) 
+<~#*) oxk - 

-f[ ~ "~u: )--U ~l~: (< v~> - < v,~))<~otv~> + 

+ t lm i 

I" I ] + ( c~t > -y < ~,,,ui > - ( v,~v~ > - ( ~ot v,,,vi ) + 

[((Um)-- ('))(f~ + (~~l) (~("mRj)-- 

- ( v~v: > - ( o~ l v~v: > + --y- ~,~t: ~k~i x 

/ ( ~,,,~t ) (< ~,~ > < c~/, > + < ~o:/, >), 

o<~%) + I O(N>(o:~%vx) +(cO~Vk)O(O:> + 

o(Q;> 2 
+ (~~ vk) ox~ - ~, (o~%), 

(13) 

Dt + (N~ Oxk +<~ + 

+ ( ":'k ) oxk to. ~,,,: t< ~'t ~ ) (( u,,, > - ( v., )) - 

339 



(1 1) 
(14) 

( vivjv k ) ( N ) = f dv f d co vyjv/c ( cO ), 

( o2icOjVk > ( N) = f dv f doo r ( (O ) , 

( % v/v, ) ( N ) = f dv f d w %v:vk ( r ), 

where <vivyvk>, < w t w : k > ,  <~oiv/vk> are the third moments of the fluctuations of the velocity and angular 

rotational velocity of the particles. 

3. The system of equations (9)-(14) is not closed; the equations for the first and second moments of the 

fluctuations include expressions for higher-order moments. The closure of the system of equations for the second 

moments on the basis of equations for the third moments of the fluctuations of the disperse phase velocity require 

the use of the hypothesis of quasi-normality when expanding fourth-order correlations [19 ]. In the present work, 

to close the system of equations for the first and second moments of the fluctuations of the disperse phase charac- 

teristics and construct boundary conditions we suggest a more general approach based on an approximate solution 

of kinetic equation (8). Equation (8) is stated in the form 

D(Vk ) ( U k ) ' ( V  k ) 
D ( (b ) + _ _ +  + ?~o eijk • Dt Dt -c 

• [(~i)((U:)-(Vj))-(~i)v]+o)i((U:)-(V:))- 

-c~ O((o)Ov k ( D(~k)-D~ +~("k))  O((P)OWk _ 

0 02 
aii -- aii ( ~ ) = A ((b) , (15) O(Vi) O((P) O(f~i) O(cO) 1(1--6ik) aOO2(~) 

- -  v k  Ox k Ov i vk Ox k Oco i T Ov i Ov k ~ Ov i Ov i 

1 (  02 O )  1 0  
A= T oiio  + vi 

where the operator A on the right-hand side describes the process of the onset and decay of the pulsational motion 

of the disperse admixture as a result of the interaction of the particles with turbulent moles. The method for solving 

kinetic Eq. (15) is analogous to the Chapman-Enskog method [20] applied in the kinetic theory of gases. In the 

flow of the inertial particles a Characteristic spatial scale - the length of the inertial path l - ~ a  1/2 - arises. Here, 

the characteristic scale of the change in the averaged quantities is L > (I+R). In this case, the small parameter 

e - I / L  < 1 appears on the left-hand side of Eq. (15). This allows one to seek the solution of Eq. (15) in the form 

((I)) = ( ( I )o)+ ((I ) l ) ,  A ((I)o) = O, 

where the correction <(Pl > is linear in the gradients of the averaged parameters of the disperse phase and satisfies 

the normalization conditions 

f d v f d t o  ((Pl) = f d v f d c o  v/((Pl ) = f d v f d t o ~ o i ( ~ l ) =  

= f dvf dctlco i(,O]((I) I) = f dvf dto viv i((~l ) = O. 
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In the flow core there is no source that would directly generate fluctuations of the rotational velocity of the 

particles (the rotation of the particles sets in only as a result of collision with the channel walls). The zero 

approximation in Eq. (15) has the form 

3 -i/2 vi (16) 
((b 0 ( x ,  v ,  o), t ) ) = ( N ( x ,  t ) )  I~ (2~rcrii) • exp - ~(o)) =fo0c$ ( t o ) ( N ) .  

i=1 

Using the zero approximation (16) to close system of equations (9)-(14)  and assuming that the PDF 
depends on the coordinates and the time only via the averaged parameters of the flow of the particles, we find an 

approximate solution of Eq. (15). This solution is linear in the gradients of the averaged parameters of the disperse 
phase: 

1 o 
( O ( x ,  v,  to, t ) ) = ( N ( x ,  t))~o 0 1 + ~ a i k ( 1 - - S i k  ) •  

• _ _  vivk 

(Tii akk 
T, (ViV k _ (~ikV2) 0 ( V i)  

2(7ii Ox k 

i1 - S , k  ~ -  + ~  ~ ~ ( ~ ) +  

) -1  O(ff]i)  OC~(OO) 1 1 vk 
+ ( N ( x ,  t) ) $o 0 -~ + v-~ Ox k Ow i 

(17) 

Formula (17) permits one to calculate expressions that represent pulsational transfer of the momentum, 
angular momentum, and intensity of turbulent pulsations of the dispersed phase: 

( ViV j ) = (:rii 5ij + (1 -- 5i] ) cri] -- 2 L aii OXi + 

o( v~) 2 o( v~) 
+ aiJ ox i 3 ~J a~k ox----~ 

( 1  1 )  - I  O(K2j) ( w i ~ 1 7 6  (18) ( v i o# ) = - + ~ ( vivk ) 0xk ' 

1 o%i 
( v i ~ j  o k ) = 0 ,  ( vi vj v~) = - 0ij ~ (2~ik + O~i) ~ a~k 0x k , 

( ~l  v,. vj ) = - + ~ ( vk vm vj ) ox k 

Expressions (18) and system of equations (9) -  (14) represent a closed system of equations for calculating 
the first and seconds moments of the fluctuations of the velocity and angular rotational velocity of the particles. 

4. The collision of particles with a surface is a complex process accompanied by deformation of the particle 

and the wall, evolution of heat, and onset of rotation of the particle about the point of contact with the surface. We 
consider a model of a collision of a disperse admixture with a channel wall in which the reflected particle losses 
momentum along the y and z axes (the y axis is directed along the normal to the surface, the x axis coincides with 
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the flow direction) and the remaining velocities and angular rotational velocities of a particle before and after the 

collision are interrelated as [12, 13] 

= (7"1 + a 2 f f ] z '  ff2z = i l l  +f12 ~ , Vy = - k n , = ktV'z,  

5 + 2 k  t 1 - k t 1 0 ( 1 - k t )  5k t + 2 
al - 7 ' a2 = - do 7 ' fll = 7 d o , f12 - 7 

(19) 

where kn and kt are the coefficients of restitution of the momentum of the particles after impact against the surface. 

The  P D F  of pa r t i c l e s  nea r  the  su r f ace  is w r i t t e n  in the  b o u n d a r y  l aye r  a p p r o x i m a t i o n  

O<Vx>/Oy > >  O<Vx>/Ox: 

vx 5 _ ( * (x,  v ,  to, t) ) = ( N ) g0 1 + Xxy axxOyy 

I1 t 1 1 1  vi 1 Olnoii 1 -1 O<Qz) Od(O)z) (20) 
- S V Y  ~ -  2 +8iY Oy 6(Wz) + ( N ) g O  + ~  vy 0~-- O a ) ~ '  

0 ~ o ( G )  
Y~xy = axy -- -2 (Tyy Oy 

The collision of particles with a wall causes a transformation of the PDF of the particles incident on the 

wall (Vy < 0). The PDF of the reflected particles is calculated from the PDF of the incident particles according to 

the relation 

( . + ( x  v n t ) ) -  d 
- - o o  - - o o  - - o t ~  - - o o  

x c(v" ,  fa"; v', f a ) ( . ( x ,  v', ~' ,  0),  (21) 

where the transformation kernel G is determined from the boundary relations for a single particle (19): 

G(V , ~) ; V , ~ ) = 6  - k  t 5 + k  n x 

r t  t 

X ~ (fl2Vx -- a 2 Q '  z' -- ktV'x) c3 ( a l Q '  z' - fll Vx - k t Q z ) .  (22) 

Expressions (21) and (22) yield the equality of the number of particles incident on and reflected from the 

channel wall 

<N+ >_- 7 7 7 < '  7 <*+ (x, v", . " ,  ,)>_- 
--oo 0 --oo .oo 

a d d G  d n z ( • ( x  V' = . 
- -  o o  - -  o o  - - o o  - - o o  

Upon substituting Eq. (22) into (21), we find the PDF of the particles reflected from the channel wall 

, ,  , ,  

, ,  ' t ,  I , ' X V  ~ 

( ~ + ( x ,  v. , ca , t ) ) = ( N ) 9 ' 0  .1 -57Xyktknaxxayy + 
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i t  ~Vy 
+-~ ~ 

,,2 
v x 
2 

2kt axx 

1 0 In axx 
2 Oy 

,,2 

- - + .  2k2[ayy -- 
• 

X 
0 In %y + 

Oy ,,2 I Vz 1 0 In azz 

2k2t azz 2 Oy 

1) 
- ( N ) T o  + -~ 

- l v ~  O ( ~ g )  0 

k n Oy Ow' z' 

t J  

60 z 

m ~  -fit 
(23) 

~0' = (2~~ -1/2 exp 
,,2 

v X 
2 

2kt axx 
( z ~ 2 ~ )  - ~ • 

,,2 I x e x p  - vy (27razzk~)-l/2exp 
2 

2knayy 

,,2} 
V z 
2 

2k t azz 

.x=~Vx-~:ai'-~,(Vx>, v;=Vy +~.<Vy), 
~ r  pt  t t  ~ t  

6o' z' =a lg"  2 - f l l V x  - k t ( ~ z ) ,  v z = V z . 

Boundary conditions for the averaged concentration, velocity, angular rotational velocity, and intensity of 

turbulent fluctuations of the particles can be found from the condition of equality between the sum of the fluxes of 

the corresponding dynamic characteristics Q of particles incident and reflected from the surface and the stream in 
the flow 

- - 0 0  

o ~ 

] _ { Q } =  f dV x f dVy f dV z d ~ z V y Q ( , ~ , ( x , V , Q , t )  ), 
- - 0 0  - -  0 ~  - -  0r - - 0 0  

:+{Q) = _o~ ~Vx ~o ~v; _~ ~r _~ ~.;' v; Q<.+ (x, v", .", o>. 

Here J_, J+, J are the fluxes of the characteristics Q calculated for incident and reflected particles and the 
stream in the flow related to the channel surface. 

We find a boundary condition for the normal component of the averaged velocity of the particles (y = 0) 

(Vy)  1 + 1---~--~nerf 2g~yy 

+ ~ ~oyy exp = 0 .  (24) 
1 k n 2ayy 

Relation (24) connects the intensity of the fluctuations in the velocity of the particles normal to the surface 
with the transverse velocity of the disperse phase. Using Eq. (10) to find the transverse velocity of the disperse 

phase, we come to a boundary condition for the concentration of particles which couples the gradient and the value 
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for the concentration of the particles on the surface washed by the flow. Equation (24) yields the inequality <ICy> 
1/2 < cry;. In this case, boundary condition (24) takes the form [21 ] 

l _ k n ( 2  )LO 
( V y ) +  1 + kn -~ qyy = 0 .  

Similarly, we find boundary conditions for the averaged axial velocity and angular rotational velocity of the particles 

acquired due to collision with the surface 

r Cryy 0 ( Vx ) 2 2kna2 2 1/2 
2 Oy i v y ) +  -~ayy ( V x ) =  a -~ayy ( Q z ) ,  (25) 

I l l  Ileal 1 1 -1 Oif~z) 2 (26) 
u +-~w qyy Oy i V y ) +  --~Cryy / Q z ) =  B ~O'yy / V x ) ,  

2 
A 1 = 1 - k n k  t - 3 / 7 k  n ( 1 - k t ) ,  A 2= 1 - k 2 n k t + 3 / 7 k  n ( 1 - k t ) ,  

A boundary condition for the intensity of the fluctuations in the velocity of the particles normal to the 

surface washed by the flow is found in an analogous fashion from the condition of the balance of the fluxes j{v2}. 

It has the form 

I v ,  > + 2 -s % ] % = ~ % oy " 

The fluctuational component of the velocity of reflected particles that is directed along the averaged ftow 

velocity can be determined as the difference between the actual velocity in the longitudinal direction after collision 

of the particles with the wall and the averaged velocity of the reflected particles 

t r  

alV; + a 2 r z p t  

vx = Vx - (~11 Vx ) + ~ 2 1 %  ) )  --- kt 

The boundary condition for the intensity of longitudinal fluctuations of the velocity of the particles takes the form 

axx = -~ayy Oy " 

Let us analyze boundary conditions (25)-(28). In the case of a perfectly smooth and elastic surface (kt = 
1, ks = 1) we obtain 0< Vx>/Oy = O<Qz>/dy = Oayy/ay = Oaxx/dy = 0, i.e., the fluxes of momentum and angular 
momentum of proper rotation of the particles to the channel wall are absent. Moreover, as follows from the equation 

for the averaged rotational velocity of the particles (1 i), <ff2z> = 0 in the flow. Rotation of particles sets in only in 
a rough channel (k t < 1), either elastic (kn = 1) or inelastic (kn < 1). In the case of a perfectly elastic but rough 
surface the boundary conditions, for the averaged velocity and angular rotational velocity take a simple form: 

2 )1/21 1 - k t ( 2 ( V x ) + d p ( ~ z ) ) =  r 8 ( V x )  
-~ ayy 7 1 + k t - -~ ayy Oy 
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(, 1), 0<Oz> 1/25 1 - k t (2( V x)  + dp ( ~2 z )) = - -f + ~ ~yydp 0-'--7-- 
ayy 7 l + k t 

The employment of the probability density function of the distribution of particles over coordinates, 

velocitites, and angular rotational velocities made it possible to construct a closed description of a class of flows 

having practical significance. 

N O T A T I O N  

Rpi, Vpi, ~pi, radius vector, velocity, and angular rotational velocity of a particle; Ui(x, t), carrier flow 
velocity; 3, z-oj, times of dynamic relaxation of the velocity and angular rotational velocity of particles; 7~o, interaction 

parameter, proportional to the ratio of the densities of gas and particles; ei] k, antisymmetric tensor; R, characteristic 

transverse dimension of the channel; dp, diameter of particles; TE, characteristic time macroscale of turbulent 
fluctuations of the gas velocity; ~ (x), Dirac delta function; ui(x,t ), vi(x,t), fluctuations of the gas and disperse phase 

X 

velocities; coi(x, t), fluctuation of the angular rotational velocity of particles; eft(x) = 2 / v ~  f dtexp(-t2), standard 
0 

error function. 
Angular brackets denote values obtained as a result of averaging over the ensemble of turbulent realizations; 

a single prime denotes values before collision with the wall; a double prime denotes values after collision with the 

wall. 

R E F E R E N C E S  

1. A.S. Mul'gi, Turbulent Two-Phase Flows [in Russian ], Pt. 2, Tallinn (1979), pp. 47-53. 

2. S.L. Lee and F. Durst, Int. J. Muliiphase Flow, 8, 125-128 (1988). 
3. Y. Tsuji and Y. Morikawa, J. Fluid Mech., 120,385-409 (1982). 

4. Y. Tsuji, Y. Morikawa, and H. Shiomi, J. Fluid Mech., 139,417-434 (1984). 

5. Y. Tsuji, Y. Morikawa, T. Tanaka, et al., Int. J. Multiphase Flow, 14, 565-574 (1988). 
S. Matsumoto and S. Saito, J. Chem. Eng. Japan, 3,223-230 (1970). , 

7. S. Matsumoto, S. Saito, and S. Maeda, J. Chem. Eng. Japan, 10, 23-28 (1976). 
8. G.A. Kallio and M. W. Reeks, Int. J. Multiphase Flow, 15, 443-446 (1989). 
9. A.H. Govan, G. F. Hewitt, and C. F. Ngan, Int. J. Multiphase Flow, 15,471-481 (1989). 

10. K.D. Squires and J. K. Eaton, J. Fluid Mech., 226, 1-35 (1991). 
11. K.D. Squires and J. K. Eaton, Phys. Fluids A, 2, 1191-1203 (1990). 

12. A.A. Shraiber, V. N. Milyutin, and V. P. Yatsenko, Hydromechanics of Two-Component Flows with Solid 

Polydisperse Material [in Russian ], Kiev (1976). 

13. L.V. Kondratiev and V. V. Shor, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 56-64 (1990). 

14. A.A. Shraiber, L. B. Gavin, V. A. Naumov, and V. P. Yatsenko, Turbulent Flows of a Gas Suspension [in 
Russian ], Kiev (1987). 

15. S.C. Dennis, S. N. Singh, and D. B. Ingham, J. Fluid Mech., 101,257-279 (1980). 
16. Y. Tsuji, Y. Morikawa, and O. Mizuno, J. Fluid Engineering, 4, 484-488 (1985). 

17. V.I.  Klyatskin, Stochastic Equations and Waves in Randomly Inhomogeneous Media [in Russian ], Moscow 
(1980). 

18. I.V. Derevich and L. I. Zaichik, Prikl. Mat. Mekh., 54, No. 5, 767-774 (1990). 

i9. I .N. Gusev and L. I. Zaichik, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 50-60 (1991). 
20. K. Cercignani, Mathematical Methods in the Kinetic Theory of Gases [Russian translation ], Moscow (1973). 
21. I.V. Derevich and V. M. Eroshenko, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 69-78 (1990). 

345 


